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the best frequencies to use for radio communications throughout the world. There are also
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A complete listing of the Bureau’s publications can be found in National Bureau of Stand-
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(81.50), and Miscellaneous Publication 240, July 1957 to June 1960 (includes Titles of Papers
Published in Outside Journals 1950 to 1959) ($2.25); available from the Superintendent of
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. DESIGN OF EXPERIMENTS FOR REMOTE MICROWAVE
PROBING OF THE ATMOSPHERE

by

B. R. Bean, R. L. Abbott,
and E. R. Westwater

1. Introduction

The purpose of this report is to summarize progress to date on
studies of the feasibility of remotely probing the atmosphere at micro-
wave frequencies to determine atmospheric W and temperature
structure. This will involve first summarizing the work to date on
atmospheric absorption of radio waves and the thermal noise properties
of the atmosphere. Analysis of computed values of thermal noise has
indicated promising experimental procedures to be followed in actually

determining atmospheric temperature and humidity structure.

2. Thermal Noise

All substances with temperatures above absolute zero emit
thermal radiation. The distribution of this energy throughout the fre-
quency spectrum is characteristic of the temperature of the source
and of the constituent materials of the source itself. For our purposes,
the source of radiation is the atmosphere; the frequency region is the
microwave region from 10-50 kmc.

General laws of thermodynamics relate the absorption charac-
teristics of a medium to those of emission. Good absorbers of radiation
are also good emitters, and vice versa. In the microwave region, the
atmosphere is a good emitter, as well as a strong absorber, of radiation.
We may, therefore, describe guantitatively both emission and absorption
by the same parameter, namely the absorption coefficient.

~The emission characteristics of any real body at a fixed frequency

may be compared to those of a black body at the same temperature.



-2-

In the microwave region the noise energy emitted by a black body is
given by the Rayleigh-Jeans law

2
$(v) = 8nkT ( - > (1)
where
Y(v) = emitted black body flux density per unit frequency,
v = frequency,
T = absolute temperature, 0K,

c = the velocity of light, and
k = Boltzmann's constant (1.38044 x 16 ergs/ K°).

The emission per unit length along an actual ray path may now be ex-

pressed as

B(v) = y(v)¥ (v) (2)

where Y(v) = absorption per unit length.
Remembering that the fraction of energy absorbed in a path length ds is
given by the optical depth dt(=y(v) ds), we may obtain the differential

equation for transmission of radiation through the atmosphere:

dI(v) _ .
e -I(v) + Y(v) (3)

where I(v) is the flux density per unit frequency. The solution to this
radiative transfer equation is

r
m @0 r

I(v) = Z 1 (v)e” S“" + g W(v) e-sf 4 4r (4)
8

m 8
where the summation extends over all discrete noise sources which may

be present, l.m( v) is the unattenuated flux density transmitted from the
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mthdiscrete source located at position T 8'is the point of reception of
energy, and the other symbols have their previous meaning. It should be
recognized that the above integrals extend over a ray path determined by
the refractive properties of the medium and cannot be evaluated unless
these refractive properties are known.

In analogy to the temperature dependence of the noise energy as
given by the Rayleigh-Jeans law, we may, in the microwave region,
relate tiae intensity of radiation received from a particular direction, I{v),

to an equivalent temperature, Tm(v). by the following relation

I(v) = 8nk Tm(v)

’ (5)
)‘2
or, from (4)
T .
o0 .
- dr '
T (v;= T (v) e g S’ - \dr
m ; m,s 8 + ) T(r) e sS dr (6)

This equivalent temperature is called the thermal noise temperature.

It is apparent that the thermal noise temperature of the atmosphere
as measured by an antenna, will depend explicitly upon antenna orientation
and the frequency, and implicitly upon the atmospheric conditions along
the ray path giving rise to absorption and emission of energy. It seems
plausible, therefore, that one could exploit this dependence of thermal
noise on atmospheric conditions as a probe of atmospheric structure.

Thermal noise is equally important in receiving communications
since it represents the lo vest possible noise level that can be attained by
an antenna immersed in the atmosphere. This minimum noise level will,
of course, vary, depending on atmaspheric conditions, the frequency, and

the antenna orientation.
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3. Attenuation by Atmospheric Gases

It was pointed out in the previous section that the emission and
absorption characteristics of the atmosphere can both be described by
the absorption coefficient. Fortunately, for our purposes, gaseous
absorption has previously drawn much attention, both theoretically and
experimentally, and is fairly well understood.

The major atmospheric gases that need to be considered as
absorbers in the frequency range of 100 to 50, 000 Mc are water vapor
and oxygen. For these frequencies the gaseous absorption rises prin-
cipally in the 1. 35 cm line (22, 235 Mc) of water vapor and the series of
lines centered around 0.5 cm (60, 000 Mc) of oxygen [ Van Vleck, 1947a,b],
The frequency dependence of these absorptions is shown in figure 1[Van
Vleck, 1947a].

In qonnection with figure 1, the water vapor absorption values have
been adjusted to correspond to the mean absolute humidity, p , (grams of
water vapor per cubic meter) for Washington, D. C., 7.75 g:/m3
The reason for this adjustment is that water vapor absorption is directly
proportional to the absolufe humidity { Van Vleck, 1951] and thus, variations
in signal intensity due to water vapor absorption may be specified directly
in terms of the variations in the absolute humidity of the atmosphere.

It can be seen from figure 1 that the water vapor absorption exceeds
the oxygen absorption inthe frequency range 13, 000 Mc to 32, 000 Mc,
indicating that in this frequency range the total absorption will be the most
sensitive to changes in the water vapor content of the air, while outside this
frequency range the absorption will be more sensitive to changes in oxygen
density. Only around the resonant frequency corresponding to A = 1.35 cm
is the water vapor absorption greater than the oxygen absorption. The

absorption equations and the conditions under which they are applicable
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have been discussed by Van Vleck, [ 1947a].
The Van Vleck theory describes these absorptions in the following
manner: the oxygen absorptionat T = 293°K and atmospheric pressure in

decibels per kilometer, Yy is given by the expression:

0.34 Avl sz sz
Y, = | + + - (7)
1,2 LAk 132 2 1\ 2
2 1 (z +I> + Av, (2'I> +Av;

where \ is the wave length for which the absorption is to be determined
and where Avl and sz are %, line width factors with dimensions of cm-l.
This formula is based on the approximations of collision broadening
theory. This theory postulates that, although the electromagnetic energy
is freely exchanged between the incident field and the molecules, some
of the electromagnetic energy is converted into thermal energy during
molecular collisions and thus av'.part of the incident electromagnetic
energy is absorbed. The term in (7} involving Avl gives the nonresonant
absorption arising from the zero frequency line of oxygen molecules while
the terms involving sz describe the effects of the several natural resonant
absorptions of the oxygen molecule which are in the vicinity of 0.5 cm
wavelength. The (2% I/X)(cm_l) terms are the portion of the shape factors
that describe the decay of the absorption at frequencies away from the
resonant frequency (the number 2 is the reciprocal of the centroid resonant
wavelength 0.5 cm).

The water vapor absorption at 3930K,rising from the 1. 35 cm line.

Yy is given by:

Y2 3.5x10”° Avs . avs

8)
[ 2 , 2 2 {
\ 11 2 1 2

(K - 1.35> t av, <i + T'EE) tavy




-6-

where p is the absolute humidity and Av_ is the % line width factor of the

3
1.35 cm water vapor absorption line. The additional absorption grising

from absorption bande above the 1.35 cm line, Vg is described by:

4
P 2

Y .05 Av
2. (9)

where Av4 is the effective. Y, line width of the absorption bands abov.e the
1.35 cm line. The non-resonant term has been increased by a factor of
4 over the original Van Vleck formula in order to better satisfy experimen-
tal results. [Becker and Autler, 1946. ]

Although Van Vleck gives estimates of the various line widths, more
recent experimental determinations were used whenever possible. The

line width values used in this paper are summarized in table 1.

Table 1: Line Width Factors Used to Determine Atmospheric Absorption

Line Temper-
Width ature Value Sources
Av, 293°K 0.018 cm-l atmosphere-l Birnbaum & Maryott [ 1955]
AvZ 300°K 0.049 cm“1 atmosphere-l J.O. Artman & J. P. (fordor]l
- -1 1953}
av, 318°K  0.087 cm” ! atmosphere”! G.E.Becker &S. H. Autler
o -1 -1 [1946]
Av 318K 0.087 crm  atmosphere G.E.Becker & S. H. Autler
4 [1946]

The preceding expressions for gaseous absorption are given as they
appear in the literature and do not reflect the pressure and temperature
sensitivity of either the numerical intensity factor or the line widths.

This sensitivity must be considered for the prese;nt application since it

is necessary to consider the manner in which the absorption varies with
temperature and pressure variations throughout the atmosphere. The
dependence of intensity factors upon atmospheric pressure and temperature
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variations was considered to be that given by the Van Vleck theory.

The magnitude and temperature dependence of the line widths is
a question not completely resolved. Both theory and experiment indicate
the line width to vary as (1/ 'I?)x : X > 0. Different measurements on the
sume line of oxygen have given values of x ranging from .71 to .90 with
differences in the magnitude of Av of about 20% [ Tinkham and Strandberg, 1955;
Hill and Gordy, 1954]. Experiments have also clearly indicated that the
line width changes from line to line, with maximum fluctuations of about 15%.
In the frequency region considered in this paper (10-45 kmc) the centroid
frequency approximation for oxygen is valid and a mean line width can be
used with good accuracy, but in the region of the resonant frequencies of
oxygen, these line-to-line line width variations must be taken into account.
The expressions used to calculate the absorptions are given in table 2. The
reference temperatures given are those at which the appropriate experi-
mental determinations were made, and the pressures are to be expressed
in millibars. A detailed discussion of the theoretical aspects of the pressure
and temperature dependence is given by Artman and Gordon [ 1953].

Experimental measurements on the absorption of microwaves by the
atmosphere, (performed after our original work), show different values of
the loss than those obtained by theoretical prediction methods. There is
reasonably good agreement between the predicted and measured loss for
oxygen, but the measured loss for water vapor is considerably greater
than that of the predicted amount, particularly above 50, 000 kmc [ Straiton
and Tolbert, 1960]. These observed discrepancies have little effect upon
the present study, which is confined to frequencies less than 50 kmc. The
results of the present study, for the frequency range 100 Mc-50, 000 Mc,
agree with those reached by Tolbert and Straiton [ 1957] in their field exper-
iments at Cheyenne Mountain and Pikes Peak, Colorado, at altitudes of
14, 000 feet.
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Table 2. Value~s used in the Calculation of Atmospheric Absorption

Absorption Intensity
[ab/ km] Factor Line Width
Y, 3
! .34 / P 293 \* . /P __\/293 A
)‘Z 1013.25 T ) 1\1013.25 T
and
3
Av P 300 2
2\1013.,25 /\ T
* A
Y, 5/2 v
-p- : .0318 <£9_§> e‘-éﬁ Av ( P >/318\
XZ T ) T 3\l013.25/\ T
<l+.0046p>
Y. ¥
= 2057293 318’\
P AN 4\1013. zs)(

(1+. 0046p>

* p is water vapor density in gm/ m>.

The above approach represents that presented by Bean and Abbott
in 1957. The following treatment was given by Gunn-East [ 1954] and
based on Van Vleck's two papers [ 1947a, b]. This latter presentation is
only valid when single line absorption with no appreciable overlap from
adjacent lines is considered.

By taking into account the temperature and pressure dependence of

the line widths it is seen that for a given quantity of water vapor, the
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- 644
attenuation is proportional to P-1 and T e T at the resonance line,
to P and T‘-:\S 6;4,1,4- at the sides of the curve and to P and T 3/ 2 well

away from resonance. In applying the above considerations to absorption
approximations, it must also be kept in mind that for a given relative
humidity, the density will vary considerably with temperature. Table 3
shows attenuation by water vapor at various temperatures and wavelengths.
The behavior of water vapor attenuation near the resonant line is very
remarkable, as may be seen by inspecting equation (8). Since Av3 is
% » for order of magnitude purposes it may be neg-
lected in the denominator for non-resonant wavelengths. The attenuation

small compared to

per unit density is thus directly proportional to Av3‘ and hence to the total
pressure for these frequencies. But at the resonant frequency, the domi-
nant term in the expression is proportional to %1,3 and thus inversely
proportional to the pressure. In the atmosphere, the water vapor density
is proportional to the total pressure. Therefore, the attenuation is inde-
pendent of pressure at the resonant frequency and now depends only on the
fraction of water vapor present. For practical purposes, this means that
attenuation can occur at high altitudes with the same effectiveness as in
the lower, denser layers if the mixing ratio is the same.

On the other hand, oxygen absorption occurs because of a large
number of lines around 60 kMc. In the region from 3 to 45 kme the
attenuation is proportional to p2 andto T -5/2 [ Gunn and East, 1954]. As
the temperature decreases the attenuation increases gradually. At -40°C
oxygeﬁ attenuation is about 78% higher than at 20°C due to increased density
at low temperatures. Table 4 shows the pr essure and temperature cor-
rections for oxygen attenuation at the wavelengths between 0.7 and 10 cm.

Figure 2 shows the attenuation measured by Becker and Autler [ 1946].

The dashed line shows values calculated from Van Vleck's theory. The

water vapor absorption curve, ¢, corresponds to a water content of 1 gm/ m3.
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Since absorption is so sensitive to the absolute humidity level, it
is helpful to have information on the climatic variations of absolute
humidity throughout the 1 to 99% range of values normally used in radio
engineering. Estimates of the values of absolute humidity at the surface
expected 50% of the time for the United States for February and August
are given in figures 3 and 4 respectively [ Bean and Cahoon, 1957]. It is
evident that for either month the coastal regions display greater values of
absolute humidity than do the inland regions. Note that for any location
the August values are consistently greater than the February values. Fig-
ures 5 to 8 show the values of absolute humidity expected to be exceeded
1to 99% of the time throughout the United States in both summer and winter.
In addition to oxygen and water vapor, there are a number of other
atmospheric gases which have absorption lines in the microwave region
from 10 to 50 kmc. These gases normally constitute a negligible portion
of the general composition of the atmosphere, but could conceivably con-
tribute to attenuation. Table 5 shows the resonant frequencies, vo, maximum
absorption coefficients at 300°K, @ ax’ (attenuation coeffiqient if the fraction
of molecules present were equal to unity), expected concentration in the atmos-
phere and expected absorption coefficients, a, due to these trace constituents.
The data on molecular absorption coefficients were taken from Ghosh and
Edwards [ 1956], that on concentrations from the Compendium of Meteorology
[1951]. It is readily seen that the attenuation due to these sources is negligible

compared to the high absorption due to oxygen and water vapor.

4. Estimates of the Range of Total Gaseous Absorption

The range in gaseous absorption can be seen by considering the
data for the monthe of February and August at Bismarck, North Dakota,
and Washington, D. C., two stations with very different climates. The

values of total gaseous absorption (defined as the sum of Ypr Yy and Yy
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Table 5
Absorption Coefficients of Minor Atmospheric Gases

|Gas | v, (Me) o.max(db/km)‘ Zf;‘;};:ﬂgme a(db/ km) at ground{
12,258, 17 ' 1.9x107 " G; l)xlo"" (0-1.9)x10-7
12, 854.54 8.7x10" ! (0-8.7)x10""
23,433.42 1.2x10"} / (0-1.2)::10'7
24,304.96 2.3 (0-2.3)x10"°
‘soz 25,398.22 2.1 (0-2.1)x10::
29, 320. 36 3.3 (0-3.3)x10
44,098.62 5.2 (o'-s.z)xlo’6
52, 030.60 9.5x10" (0-9.5)x10'7
24,274.78 2.5 1.25%10"°
22,274.60 2.5 0.5x107° 1.25%10°
N,0 125,212.55 2.5 1.25x107
25, 123.25 2.5 1.25x10°°
NO, 26,289.6 2.9 (0 to .z)xlo'8 6to5. 8)x10-8
10,247.3, | 9.5x107% | GUMEL 6 | (010 6. 3px10)
O3 |11,075.9 9 1x10:7; (:itr;t%z)xlf‘, (0 to 6.3)x10:z
42,832.7 4.3x10 (0 to 2. 8)x10
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‘ where Yl = oxygen absorption in decibels per kilometer, YZ = water vapor
absorption rising from the 1.35 cm line and Y3 = additional absorption
rising from absorption lines whose frequencies are considerably higher
than that corresponsing to the 1. 35 line) at each station and elevation up

to 75, 000 feet are shown in figures 9 and 10 for each of the four station
months for the frequency range of 100 Mc to 50,000 Mc. Above 75,000 feet
the absorption values for all four station months are identical and are given
for -each frequency in figure 11. The absolute humidity was calculated using
the upper air monthly average values of temperature, pressure, and humidity
as reported by Ratner[ 1945]. Readings for the relative humidity are not
generally given in this report for altitudes greater than about 15 kilometers
due to the inability of the radiosonde to me asure the small amount of hum-
idity present at these altitudes. It is believed that the climates represented
by these station months encompass the range of th.ose of the majority of the
continental United States radio propagation paths. '

An interesting property of the annual range of absorption as a function
of the frequency may be seen in figures 9 and 10. For the first 5, 000 feet
above the surface, it is noted that in the frequency range of 10 to 32.5 kMc.
the summer values are greater than the winter values due to increased

" humidity of the summer months. Outside of this frequency range, however,

the winter values of absorption are greater due to the increased oxygen density.
The relevant parameter in ray tracing is the refractivity N(N = (n-1)x10 ",
‘where n is the refractive index). Equation(lo)"shows how N is related to the
atmospheric parametefs, pressure P (mb), temperature T (ko), saturation

vapor pressure es(mb) and relative humidity R:

N = 77’i6 <p+ 4810_e'R> . (10)
T
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6. Design of Experiments

Thermal noise temperatures are subject to wide fluctuations on a
geographical, seasonal, and diurnal basis. The mean thermal noise may
be expected to be dependent on the altitude of the observing station through
the pressure and mean surface temperature. The surface temperature
effect is not as strong in the mean effect as the pressure since these are
strong solar surface effects. On a diurnal basis the higher stations would
be expected to show greater fluctuations.

One expects that the thermal noise temperature would be strongly
dependent upon the angle of arrival of the radio ray. Rays incident at
the receiving antenna near the horizontal sample a larger section of the
lower atmosphere than vertical rays. In a normal atmosphere, rays
incident from a horizontal direction traverse about 125 km to reach an
altitude of 1 km, while of course, vertical rays traverse only 1 km.
Horizontal rays are also very sensitive to the refractive index profile in
this lowest portion of the atmosphere. Thus one would surmise that the
thermal noise temperature is most sensitive to the detailed structure of the
atmosphere when small angles of elevation are involved.

Thermal noise is also very dependent on the absolute humidity.

Vertical thermal noise measurements on the 1.33 cm line sample .
the total water vapor distribution and thus are an index of the total precipi-
table water above the station. When combined with information at other
frequencies and angles it should yield significant information about the
state of the lower atmosphere.

It seems clear that the use of the thermal noise temperature as a
criterion for the temperature and water vapor profile of the atmosphere
must involve both angle and frequency diversity. For the avoidance of
competing sources it would seem that the best frequencies are those from

about 8 to 38 kmec.
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Analysis of our previously reported data indicates the probable
direction of our continuing work upon developing a method of passive
probing of the atmosphere at microwave frequencies.

Consider figures 13 to 16 where the thermal noise at water vapor
resonance (A = 1,339 c¢cm), just off water vapor resonance () = 1.429 cm)
and well off resonance (A = 3 cm) are plotted versus angle of arrival of a
radio ray at the earth's surface. The temperature and absolute humidity
distributions with height for each of the four observations are giiren on
figures 17 to 20. It is observed that the four cases shown are widely
different in their atmospheric structure.

The dependence of thermal noise upon temperature and humidity
structure is further emphasized by taking the difference between each case
and the zero humidity standard atmosphere as previously reported. These
differences, for each wavelength are given on figures 21 to 24.

It is observed that the curves given show differences in intercept,
slope, position, and intensity of maximum, thus confirming the direction
of the experimental program towards frequency and angular diversity meas-
.urements . It is evident that a model atmosphere may be selected that will
emphasize the departures from standard more dramatically than the present
choice. The work to be carried out under the continuation of this contract
will thus seek to interpret the calculated values of thermal noise referenced
to various standard atmospheres, taking full account of the fact that the

initial values of temperature and humidity would in practice, be known.
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